Monthly Archives: May 2017

Capstan Equation

Posted in Mechanics and tagged on .

This note reviews the derivation of capstan equation. A capstan is a cylinder-like device that turns to wind a rope or cable around it to lift or haul things. Ropes and cables are flexible enough to be wound and work as a medium to transfer force to other bodies. The capstan’s cylindrical geometry couples rope’s tangential and radial loads as the rope is in equilibrium on the capstan. This coupling transfers a portion of the rope’s tangential tensile load into its radial contact pressure with the capstan, thus, enlarges the frictional effect. This behavior results in a distinct feature of capstan devices—the ratio of tensile forces at two ends of the rope wound on a capstan is an exponential function of the product of kinetic friction coefficient and wrap angle (slip angle to be precise) between them. Looping multiple threads of rope on the capstan would significantly increase the contact area where the friction can take place on, thus, significantly alter the ratio of two end forces of the rope, which sometimes would be nice to take advantage of. The same mechanics universally governs the problems with similar geometry and loading members, for instances, a belt transporting on pulleys or a web transporting on rollers. The capstan equation solves the tensile force developed in the rope (belt, web) undergoes kinetic friction on capstans (pulleys, rollers).
Continue reading